skip to main content


Search for: All records

Creators/Authors contains: "Xu, Zongbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Both natural and anthropogenic seismic sources generate so‐called ambient seismic waves. One in turn can use ambient seismic waves to estimate these source distributions and study source characteristics, for instance the source mechanism. A commonly used estimation method is called matched field processing (MFP), and the MFP results are inherently smeared by the array geometry. Another approach to estimate ambient seismic sources is to apply full waveform inversion (FWI) to the crosscorrelations of ambient seismic wave recordings. Both methods have pros and cons, but the model resolution and uncertainty in these two methods are important for the interpretation. Unfortunately, this topic has attracted little attention in the past. We propose to estimate both the model resolution matrix and model covariance matrix of the inversion using singular value decomposition. We demonstrate our estimates using two examples, one of which is an actual field array geometry. We quantitatively compare the model resolution of the two methods and discuss the model null space. We demonstrate that FWI has superior resolution with enough independent data and should be used when computational resources permit.

     
    more » « less
  2. null (Ed.)
    SUMMARY Estimation of ambient seismic source distributions (e.g. location and strength) can aid studies of seismic source mechanisms and subsurface structure investigations. One can invert for the ambient seismic (noise) source distribution by applying full-waveform inversion (FWI) theory to seismic (noise) crosscorrelations. This estimation method is especially applicable for seismic recordings without obvious body-wave arrivals. Data pre-processing procedures are needed before the inversion, but some pre-processing procedures commonly used in ambient noise tomography can bias the ambient (noise) source distribution estimation and should not be used in FWI. Taking this into account, we propose a complete workflow from the raw seismic noise recording through pre-processing procedures to the inversion. We present the workflow with a field data example in Hartoušov, Czech Republic, where the seismic sources are CO2 degassing areas at Earth’s surface (i.e. a fumarole or mofette). We discuss factors in the processing and inversion that can bias the estimations, such as inaccurate velocity model, anelasticity and array sensitivity. The proposed workflow can work for multicomponent data across different scales of field data. 
    more » « less